Skew quantum Murnaghan-Nakayama rule

نویسنده

  • Matjaž Konvalinka
چکیده

In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara’s original proof, and one via Lam-Lauve-Sotille’s skew Littlewood-Richardson rule. Résumé. Dans ce résumé étendu, nous élargissons le cadre de résultats récents de Assaf et McNamara, la règle disymétrique de Pieri et la règle disymétrique de Murnaghan-Nakayama, pour obtenir une identité plus générale donnant une expansion élégante du produit de la fonction shurienne disymétrique avec une fonction de somme de puissances quantiques en termes de fonctions schuriennes disymétriques. Nous donnons deux démonstrations, la première suivant l’approche de Assaf-McNamara et la deuxième par le biais de la règle disymétrique de LittlewoodRichardson obtenue par Lam-Lauve-Sotille.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short Proof of a Plethystic

The purpose of this note is to give a short proof of a plethystic generalization of the Murnaghan–Nakayama rule, first stated in [1]. The key step in the proof uses a sign-reversing involution on sequences of bead moves on James’ abacus (see [3, page 78]), inspired by the arguments in [4]. The only prerequisites are the Murnaghan–Nakayama rule and basic facts about plethysms of symmetric functi...

متن کامل

A Combinatorial Proof of a Plethystic

The purpose of this note is to give a combinatorial proof of a plethystic generalization of the Murnaghan–Nakayama rule, first stated in [1]. The key step in the proof uses a sign-reversing pairing on sequences of bead moves on James’ abacus (see [3, page 78]), inspired by the theme of [4] ‘when beads bump, objects cancel’. The only prerequisites are the Murnaghan– Nakayama rule and basic facts...

متن کامل

Two Murnaghan-nakayama Rules in Schubert Calculus

The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology ring of the Grassmannian. These rules compute all intersections of Schubert cycles with tautological classes coming from the Chern character. Like the...

متن کامل

A Murnaghan-Nakayama rule for noncommutative Schur functions

We prove a Murnaghan-Nakayama rule for noncommutative Schur functions introduced by Bessenrodt, Luoto and van Willigenburg. In other words, we give an explicit combinatorial formula for expanding the product of a noncommutative power sum symmetric function and a noncommutative Schur function in terms of noncommutative Schur functions. In direct analogy to the classical Murnaghan-Nakayama rule, ...

متن کامل

Murnaghan-nakayama Rules for Characters of Iwahori-hecke Algebras of Classical Type

In this paper we give Murnaghan-Nakayama type formulas for computing the irreducible characters of the Iwahori-Hecke algebras of types An−1, Bn, and Dn. Our method is a generalization of a derivation of the Murnaghan-Nakayama formula for the irreducible characters of the symmetric group given by Curtis Greene. Greene’s approach is to sum up the diagonal entries of the matrices of certain cycle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011